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Price forecasting of mustard using ARIMA and EGARCH models
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Abstract
Autoregressive Integrated Moving Average (ARIMA) and Exponential GARCH (EGARCH) model was
studied along with their estimation procedures for modelling and forecasting of mustard price. For forecasting
mustard price ARIMA (0,1,1) model is used which gives reasonable and acceptable forecasts but  the study
has revealed that the AR(1)-EGARCH(1,1)  model outperformed the price forecasting models for mustard
prices primarily due to its ability to capture asymmetric volatility pattern.

Key words: ARIMA, EGARCH, mustard, forecasting, price

Journal of Oilseed Brassica, 8 (2) : 181-186, July 2017

Introduction
Mustard, Brassica species, is an annual, cool season
crop that is native to the temperate regions of Europe
and one of the first domesticated crops.  Mustard/
Rapeseed cultivation is done widely throughout the
world (Oplinger et al, 1991).

Mustard crop accounts for nearly one third of the
oil produced in India, making it the country’s key
edible oilseed crop. Due to the gap between domestic
availability and actual consumption of edible oils,
India has to resort to import of edible oils. It is the
major source of income especially even to the
marginal and small farmers in rainfed areas. Since
these crops are cultivated mainly in the rainfed and
resource scarce regions of the country, their
contribution to livelihood security of the small and
marginal farmers in these regions is also very
important. By increasing the domestic production
substantial import substitution can be achieved. So,
the crop has the importance for farmers as well as
for the nation. Accurate forecasting about the prices
will help the farmer to plan the area under the crop
and the traders to plan their decisions.

Prices of the agricultural commodities are important
both economically and politically in almost all
countries. Agricultural commodity prices strongly

influence not only the farmers’ income but also
consumers, agri business industry and policy makers
as they are quite volatile in nature. India has a long
history of policies aimed at smoothing out the price
volatility for the consumers and income volatility for
the farmers. But now there is need to understand
the complexity of commodity price dynamics that is
more urgent against the backdrop of current
tendencies to remove the traditional schemes to
sustain in the globalized  markets. To capture these
unforeseen variations in the prices of the agricultural
commodities accurate forecasting models are
extremely important for efficient planning and
monitoring.  Over the period, there have been
continuous refinements in price forecasting models
so that more and more accurate price forecasting
can be done for the benefit of farmers and other
organisations. The study on finding a best suitable
method out of existing advance models of price
forecasting is a useful exercise for planners,
agriculture departments and other stake holders
working for price forecasting.

Thus, the present study was an attempt to identify
the best suited model for the price forecasting of
mustard in the Tonk district of  Rajasthan.
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Materials and Methods
The secondary data of monthly wholesale mustard
prices for Tonk mandi were collected from the
AGMARKNET site. The data of the mustard prices
for the period from January 2006 to February 2016
was utilized for the analysis purpose.

Auto Regressive Integrated Moving Average
(ARIMA) model and Generalized Auto Regressive
Conditional Heteroscadasticity (GARCH) model
were used to identify the best fitted model for the
mustard crop.  Exponential GARCH model was also
used as it is advance form of GARCH model. The
details of these models are as follows:

Auto Regressive Integrated Moving Average
(ARIMA) model
Box and Jenkins introduced this procedure in the
year 1970. The set of models introduced by them
are popularly known as ARIMA models. This
technique is used to forecast future values of a series
based on completely its own past values. ARIMA
models are most popular models for forecasting a
time series which can be made to be ‘stationary’ by
differencing if necessary required. A random
variable that is a time series is stationary if its
statistical properties are all constant over time.

ARIMA methodology attempts to describe the
movements in a stationary time series as a function
of ‘Autoregressive and Moving Average’ parameter.
These are referred to as AR parameter
(Autoregressive) and MA parameters (Moving
Averages).

Autoregressive (AR) Model
An AR model with only single parameter may be
written as

Y(t)=A(1)*Y(t-1)+E(t)

Where Y(t)= time series under investigation; A(1)=
the autoregressive parameter of order 1; Y(t-1)=the
time series lagged 1 period; E(t)=the error term of
the model.

This simply means that any given value Y(t) can be
explained by some function of the previous value,
Y(t-1) plus some unexplainable random error E(t).

Moving Average Models
A second type of box-Jenkins model is called a
moving average model. Although these models look
very similar to the AR model, the concept behind
them is quite different. Moving average parameter
relate what happens in period t only to the random
error that occurred in past time period, i.e. E(t-1) E(t-

2) etc. rather than to Y(t-1),Y(t-2),Y(t-3) as in the
autoregressive approaches.

A moving average model with one MA term may
be written as follows:

Y(t)=-B(1)*E(t-1)+E(t)

The term B(1) is called an MA of order 1. The
negative sign in front of the parameter is used for
convention only. The above model simply says that
any given value of Y(t)is directly related only to the
random error in the previous period, E(t-1),and to the
current error terms, E(t).

Mixed Models (ARIMA)
ARIMA methodology also allows model to be built
that incorporate both autoregressive and moving
average parameters together. These models are
often referred to as “mixed model” although this
makes for a more completed forecasting tool, the
structure may indeed simulate the series better and
produce a more accurate forecasting. Pure model
imply that the structure consists only of AR or MA
parameter- not both. The model developed by this
approach are usually called ARIMA model because
they use a combination of autoregressive (AR)
integration i.e.,  referring to the reverse process of
differencing to produce the forecasting, and moving
average (MA) operation. An ARIMA model is
usually stated as ARIMA (p,d,q) this represent the
order of the autoregressive component (p), the
number of differencing operators (d), and the highest
order of the moving average terms (q).

Generalized Autoregressive Conditional
Heteroscedastic (GARCH) model
Autoregressive conditional heteroscedastic (ARCH)
model, was introduced by Engle in 1982. ARCH
models are quite useful in analyzing the time series
data which exhibit volatility or clustering and are



183Journal of Oilseed Brassica, 8 (2) July, 2017

characterized by varying variance. This model allows
the conditional variance to change over time as a
function of squared past errors leaving the
unconditional variance constant. The presence of
ARCH type effects in financial and macro-economic
time series is well established fact. The combination
of ARCH specification for conditional variance and
the Autoregressive (AR) specification for conditional
mean has many appealing features, including a better
specification of the forecast error variance.

The ARCH (q) model for series ( t) is defined by
specifying the conditional distribution of t given
information available up to time t.

The process ( t)  is ARCH (q), if the conditional

distribution of ( t)  given available information t-1 is

Where, ao> 0, ai> 0 for all I and a<1

Generalized ARCH (GARCH) Model
In order to overcome the limitation of the ARCH
model, Bollerslev (1986) and Taylor (1986)
independently proposed the Generalized ARCH
(GARCH) model in which conditional variance is
also a linear function of its own lags. This model is
also a weighted average of past squared residuals
but it has declining weights that never go completely
to zero. It gives parsimonious models that are easy
to estimate and even in its simplest form, has proven
surprisingly successful in predicting conditional
variances. A general GARCH model has the
following functional form:

 ht 

Exponential GARCH (EGARCH) Model
The exponential GARCH or EGARCH model was
first developed by Nelson (1991), and the logarithm
of conditional variance for this model is given by:

This specification makes the effect exponential
instead of quadratic and therefore, the estimates of
the conditional variance are guaranteed to be non-
negative. The EGARCH model allows for the testing
of asymmetries.

Forecasting Accuracy Measure
To compare the accuracy of models Mean Absolute
Percentage Error (MAPE) is used. MAPE
measures the absolute error as a percentage of
actual value rather than per period. It usually results
in elimination of the problem for interpreting the
measure of accuracy relative to the magnitude of
the actual and forecast values, as MAD does.

MAPE=           (Sum |Xt - Ft|)

                                Sum(Xt)

Where, Xt is the actual value; Ft is the forecasted
value

Results and Discussion
ARIMA and GARCH models are used for price
forecasting and based on the MAPE value best
model is selected.

ARIMA Model
Testing the stationarity: The first step for applying
the ARIMA model is to check whether the series is
stationarity or not. By examining the visual inspection

Table 1:  Stationarity Test for checking White Noise

Autocorrelation Check for White Noise
To Lag Chi-Square DF Pr>ChiSq          Autocorrelations

6 536.23 6 <.0001 0.962 0.912 0.859 0.809 0.755 0.703
12 788.85 12 <.0001 0.653 0.605 0.563 0.531 0.508 0.485
18 910.01 18 <.0001 0.454 0.416 0.380 0.353 0.332 0.313
24 973.50 24 <.0001 0.296 0.278 0.263 0.255 0.250 0.248

(Ԑ t) ψt-1 ~N (O, ht) and ht= ao +                       2t-1
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of the autocorrelation function indicated that the
mustard price series is non stationary, since the ACF
decays very slowly. The result for the stationarity
test is given in table 1. In this case, the white noise
hypothesis is rejected based on the autocorrelation

in the table 3. Then the forecasted price of the
mustard using ARIMA (0,1,1) was estimated as
given in the table. The Mean Absolute Percentage
Error of the ARIMA (0,1,1) is 6.2.

GARCH Model
Testing the ARCH Effects: The Q statistics test was
performed for analysing the changes in variance
across time using lag windows, ranges from 1
through 12 as shown in table 4. Since the p-value
for the test statistics are less than 0.0001 for all lag
windows, it strongly indicates heteroscedasticity.
The Lagrange Multiplier (LM) test results shown

Table 2: Augmented Dickey-Fuller Unit Root Tests
Values after single order differencing

Lags Rho Pr < Rho

1 -136.223 0.0001
5 -53.5592 <.0001

test. The p value for the test of the first twenty four
autocorrelations is observed as <0.0001, which
significantly rules out the assumption of stationarity
of the series. Therefore, the data series is non-
stationary in nature.

As the series is non-stationary, the next step is to
transform it to a stationary series by first
differencing. After first differencing, Augmented
Dickey-Fuller procedure was used to test the null
hypothesis that means data series is non-stationary
in nature and the alternate hypothesis depicts the
series is stationary in nature. As p-value < 0.05 that
means the null hypothesis is rejected which conclude
that data series is stationary.  The result of
Augmented Dickey Fuller Unit Root Test is shown
in table 2.

Once the mustard price series has become stationary
after first differencing then different models for AR
and MA combination were estimated and the model
with minimum AIC and SBC was selected. After
comparing various ARIMA models, ARIMA (0,1,1)
model was selected. The t value provides
significance of the tests for the parameter estimates
and indicates whether some terms in the model may
be unnecessary. In this case, the value for the moving
average is 3.43 which is highly significant as shown

Table 3:    Estimate Statement Output of ARIMA (0,1,1)

Conditional Least Squares Estimation
Parameter Estimate Standard Error t Value ApproxPr > |t| Lag

MU 19.89894 17.91986 1.11 0.2690 0
MA1,1 -0.30097 0.08763 3.43 0.0008 1

Table 4: Q and LM Tests’ result for ARCH
Disturbances

Tests for ARCH Disturbances Based on OLS
Residuals

Order Q Pr > Q LM Pr > LM

1 103.9830 <.0001 96.8511 <.0001
2 180.0565 <.0001 97.9534 <.0001
3 232.7259 <.0001 97.9602 <.0001
4 271.4314 <.0001 98.2609 <.0001
5 297.0415 <.0001 98.8151 <.0001
6 311.7927 <.0001 99.5941 <.0001
7 318.7187 <.0001 99.7814 <.0001
8 321.7404 <.0001 99.8258 <.0001
9 323.5150 <.0001 100.3399 <.0001
10 324.7409 <.0001 100.3735 <.0001
11 325.5968 <.0001 100.3740 <.0001
12 325.9457 <.0001 100.8275 <.0001

below in table 4 can help in determining the order of
ARCH Model appropriate for the data. The tests
are significant (p<.0001) through order 12, indicates
that price series are volatile and need to be modelled
using ARCH or GARCH models.

The basic ARCH (q) model is a short memory
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process in which only recent q squared residuals
are used to estimate the changing variance. The
GARCH model (p>0) allows long range memory
processes, which use all the past squared residuals
to estimate the current variance. The LM test
suggests the use of GARCH model would be
appropriate instead of the ARCH model.

Different ARCH and GARCH model were
calculated and their parameter estimates are given

in table 5. The t-values in the GARCH estimates of
GARCH 1 was not available indicating that the data
was not following GARCH.Similarly other
combinations of AR and GARCH were also
computed but the data series was not following this
model. Then the next step was to test the EGARCH
model.

EGARCH Model
The result of EGARCH model is shown table 6.

Table 5: Parameter Estimates for AR (1) - GARCH (1,1)

Parameter Estimates

Variable DF Estimate StandardError t Value ApproxPr > |t|
Intercept 1 1468 3002 0.49 0.6247
AR1 1 -1.0057 0.0127 -79.05 <.0001
ARCH0 1 26043 4633 5.62 <.0001
ARCH1 1 0.1030 0.2013 0.51 0.6090
GARCH1 1 0 0

Table 6:  Test Results for AR (1) – EGARCH (1,1)
Exponential GARCH Estimates

MAE 113.904246 Observations 122
MAPE 4.06918443 Total R-Square 0.9408

AIC 1613.1579
    Normality Test 601.4378
    Pr>ChiSq <.0001

Table 7: Parameter Estimates for AR (1) - EGARCH (1,1)

Parameter Estimates
Variable DF Estimate StandardError t Value ApproxPr > |t|

Intercept 1 2751 241.1768 11.41 <.0001
AR1 1 -0.9669 0.0314 -30.77 <.0001
EARCH0 1 21.0156 0.6367 33.01 <.0001
EGARCH1 1 -0.9889 0.0507 -19.52 <.0001

Table 8: Actual and Forecasted price of mustard by AR (1) - EGARCH (1,1) model   (‘/quintal)

Month Actual Price Forecasted Price using Forecasted Price using
ARIMA (0,1,1) AR (1) - EGARCH (1,1)

January 2016 4066.44 4545.03 4468.60
February 2016 3893.04 3942.30 4022.91
March 2016 3898.11 3855.25
April 2016   3918.01 3818.71
May 2016 3937.91 3783.38
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The EGARCH estimates show that the Mean
Absolute Error (MAE) is approximately 113 and
Mean Absolute Percentage Error (MAPE) in the
given price data series is approximately 4.  The t-
value in the EGARCH estimates, as shown in table
7 of EGARCH, is significant at <.0001 indicating
that the EGARCH1 is the best suited model.

The forecast obtained from applying AR(1) -
EGARCH (1,1) are given  in the table  for month of
March to May 2016 in table 8. The graph shown in
figure 1 depicts the actual versus the forecasted
values. On the basis of comparison of MAPE
of both the models, AR (1)-EGARCH (1,1) is best-
fitted model.

Conclusions

The performance of ARIMA and EGARCH
hasbeen studied using monthly wholesale price of
the mustard. The EGARCH model has forecasted
the volatility better than the ARIMA model.
EGARCH was employed in addition to ARCH and
GARCH models in order to capture asymmetry

pattern of the data. The EGARCH model has
outperformed the various models for the present
data set as far as modelling and forecasting is
concerned. Hence, the empirical results have
supported the theory that EGARCH model can
capture asymmetric volatility and therefore is more
suitable model for price forecasting of mustard prices
in Tonk district of Rajasthan.
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Figure 1: Graph showing actual and forecasted prices
of mustard by AR (1)-EGARCH (1,1) model
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