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Abstract
Due to increase in human population at an alarming rate, there is tremendous pressure on the agriculture
sector for increasing production of agricultural commodities. Oilseed Brassica is an important oilseed crops in
India. Although, India occupies third position with about 10.3 % share in the acreage, and production of
rapeseed-mustard in the world after China, and Canada, with the average yield of 1188 kg per hectare, which
is low as compared to world average 1994 kg/ha. The major reasons for low exploitable yield are infestation
by various pathogens, and pests, improper weed management, degradation of soils due to excessive use of
pesticides, fertilizers, and emerging pesticide resistance. Hyperspectral imaging system (HIS), also known as
imaging spectroscopy or 3D spectroscopy, combines imaging, and spectroscopy into a single system. Through
its multi-spectral, multi-temporal, and multi-resolution observation capability, the technology provides an
alternative to traditional methods for facilitating sustainable agriculture by mapping, and monitoring the
agricultural situation, retrieval of biophysical parameter, and management/ decision support for agricultural
development. For oilseed rape, the technology has been found to be useful for disease forecasting, monitoring
infestation induced damages, predicting seed yield, detection of fungal pathogens, weeds and macronutrient
analysis for monitoring fertilizer application.
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Introduction
The world population is increasing at an alarming
rate, and expected to reach around 11.2 billion by
2100. It has been estimated that India’s human
population would reach, and stabilize around 1.5
billion by 2035. Whereas the average rate of increase
of crop production is only 1.3% per year, and it
can’t keep pace with population growth. Therefore,
there is a big challenge for researchers to ensure the
crop poduction is sufficient to satisfy the need of
increasing human population. Non-scientific cropping
practices has affected the sustainability, especially
by depleting the ground water, degrading the soils,
decreasing nutrient use efficiency, and increased pest
and disease incidences. In order to make the land
sustainable, the agricultural activity today should be
considered as a system, rather than a single crop-

producing unit. A system approach to manage the
agriculture is essential for long-term sustainability,
and achieving an evergreen revolution. Seed variety,
growth environment, and field management are
major concerns in crop growth. The acquisition of
spatial and temporal variability of crop growth is one
of the goals in precision agriculture (Zhang et al.,
2002). The detection of nutrient condition, and
disease diagnosis have significant meaning for crop
growth. The different growth stages could influence
the yield of the crops, and the physiological index
including leaf chlorophyll, soluble sugar, soluble
protein, enzyme activity, and others affecting the crop
growth could be used to understand crop growth
status. Remote sensing (RS), which is defined as
the collection of information about an object without
physical contact, has been a very effective source
of information. RS data, through its multi-spectral,
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multi-temporal, and multi-resolution observation
capability, provides an alternative to traditional
methods for collection of information related to
agriculture (Navalgund and Ray, 2000; Ray, 2004b).
RS data can be used for facilitating sustainable
agriculture in three different ways: mapping and
monitoring the agricultural situation, retrieval of
biophysical parameter, and management/decision
support for agricultural development (Parihar and
Ray, 2002). A decision-support system using remote
sensing, and Geographical Information System
(GIS), super-imposing favorable weather parameter
can be useful for disease prediction followed by crop
protection activities or disease management.
Furthermore, the imaging spectroscopy has been
successfully applied in estimating the crop yield.
Examples included the prediction of biomass, and
yield of winter wheat under different nitrogen
supplies using spectral indices (Serrano et al., 2000).
This technique has attracted the growing interests
of researchers as a powerful tool for agriculture
products analysis (Ariana and Lu, 2010; Barbina et
al., 2012; Del Fiore et al., 2010; Wu et al., 2012a).
Numerous studies have illuminated the relationships
between the spectral data from vegetation leaves,
and various biophysical, and physiological parameters
of the crops (Goel et al., 2003; Jago et al., 1999;
Lee et al., 2004; Thenkabail et al., 2000; Vigneau
et al., 2011; Zou et al., 2011).

Hyperspectral immaging approach
Oilseed Brassica (Brassica sp.) is one of the
important oilseed crops in India (FAO, 2011), which
constitutes a major source of edible oil for human
consumption. The processed byproducts served as
the high energy, and protein meal for livestock.
Besides, rapeseed oil is recently being increasingly
processed as a renewable resource in many
applications owing to its very good biodegradability,
oleochemical application (e.g. detergents, soaps,
cosmetics or polymers), and fuels (Hogya et al.,
2010). Therefore, increasing yield in oilseed rape is
significant for both vegetable oil, and biodiesel
production. Though, India occupies a major position
in the acreage, and production of mustard in the
world, the average yield per hectare is low as
compared to other mustard growing countries. The
major reasons for low yield are infestation by various

pathogens and pests, improper weed management,
degradation of soils due to excessive use of
pesticides, insecticides, fertilizers, and emerging
pesticide resistance. Hyperspectral remote-sensing
approach, using remotely sensed reflectance for
many continuous narrow wavelength bands, has
been proposed for various aspects of crop
management such as the detection of various kinds
of pests and pathogens, identification and
classification of plant species, yield estimation, as
well as estimation of different crop bio-physical and
bio-chemical parameters. Effect of pest and disease
status on the spectral properties of the crop can be
used to control site-specific application of insecticide
(Pinter et al., 2003). Using remote sensing
instruments, it is possible to monitor changes in crop
health over the course of a growing season
(Richardson et al., 2004). The presence of disease
or insect feeding on a plant or canopy surface causes
changes in chlorophyll, chemical concentrations, cell
structure, nutrient and water uptake, and gas
exchange, which leads to differences in colour, and
temperature that can modify canopy reflectance
characteristics (Raikes and Burpee, 1998).
Hyperspectral imaging techniques has been found
to be useful for detection of various biotic stresses
caused due to pathogens and pests (Kumar et al.,
2013; Baranowski et al., 2015), detection of weed
emergence, and to  quality factors, such as oil, protein,
and total glucosinolate content of rapeseed (Petisco
et al., 2010), chlorophyll of rape leaves (Fang et al.,
2007), acetolactate synthase activity, protein content,
and total amino acids in herbicide-stressed oilseed
rape leaves (Liu et al., 2008, 2011). This review
covers all potential applications of hyperspectral
imaging for monitoring crop infestation, crop yield,
and  macronutrient analysis, with special emphasis
to Oilseed rape.

2. Hyperspectral imaging theory and
principals
The technique, Hyperspectral imaging system (HIS)
is also called as imaging spectroscopy, which
combines properties of imaging, and spectroscopy.
It studies and measures spectra acquired through
reflection of the electromagnetic radiation from the
object under study. A typical HIS encompasses: (i)
a source of light to illuminate the object, (ii) a lens
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for focusing and delineating field view, (iii) a
spectrograph for splitting the light into different
spectral bands, (iv) a camera for capturing final
spatial-spectral images, and (v) a software for
monitor the image acquisition. Choice of the mode
applied for image acquisition relies largely on
properties of the sample being analyzed. Basically,
there are three modes for acquisition: 1) Reflectance,
2) Transmittance, and 3) Interactance, mainly differs
in configurations of lighting, and detector systems.
The differences between these 3 acquisition modes
lead to dissimilar effects of data acquisition from
the same object. In the interactance mode, which is
a blend of reflectance, and transmittance modes,
the source of light, and the detector are on the same
side of the object under study (Nicola et al., 2007).
HIS in reflectance mode is able to detect external
properties of the target like  shape, color, size, etc.
but is not able to determine internal quality
parameters effectively. On the other hand,
transmittance mode is useful in detecting internal
characteristics as well (Ariana and Lu, 2008). The
interactance mode is suitable for measuring turbid
liquids, semi-solid, and solid substances as well
(Reich, 2005).

The technology involves acquisition of images in the
visible, and near-infrared/ infrared regions. Then
these images are combined to form a 3 dimensional
hyperspectral cube, and finally the images are
visualized as sections of the hypercube with its two
spatial (x,y) and one spectral dimension (ë). Each
spectral pixel of the hypercube refers to a spectral
signature, i.e., spectrum, of the corresponding spatial
region, and it records complete measured spectrum
of the spatial point which is imaged. The measured
spectrum specifies the sample’s ability for absorbing
or scattering the exciting light, thus characterizing
the inherent properties of the sample.  With combined
properties of imaging, and spectroscopy, the technique
HIS results in unparalleled capabilities for sample
detection, which is not possible with either
spectroscopy or imaging alone. Appropriate
qualitative, as well as, quantitative information can
be retrieved from the hypercube to determine
distribution of numerous constituents within the
sample. The precision of HIS sensors is typically
measured as spectral resolution. The spectral

resolution is defined as the thickness of the narrowest
spectral feature which can be resolved by sensor.
The bands in the HIS images are very narrow (ranging
from 5nm-20nm), and range from UV to thermal IR
regions (Muhammad et al., 2012). Due to narrow
bands, hyperspectral images acquire a very high
spectral resolution leading to better identification and
discrimination of the target.

Remote sensing hyperspectral technology for
disease forecasting
Ensuring crop protection by disease forecasting is
important for maintain the crop productivity and
quality. Sudden changes in weather conditions leads
to onset, and spread of plant diseases, which are
regulated largely by weather anomalies occurring
during a crop growth cycle. The disease incidences
above certain threshold levels, results in poor crop
yield, and grain quality. Prediction of diseases on
spatial scales either depends on observation of
weather conditions from in situ measurements or
from estimates based on satellite monitoring (Green
and Hay, 2002) or forecasts obtained through meso-
scale models (Strand, 2000). Infection of crops with
various diseases alter thermal and/oroptical properties
of leaves, canopies in spectral regions due to necrotic
or chlorotic lesions, canopy dryness, and premature
senescence orbrowning (Malthus and Madeira, 1993;
West et al., 2003). In comparison to multispectral
imaging, hyperspectral systems are fairly promising
in detection of diseases in crops (Thenkabail et al.,
2002; Laudien et al., 2004, Kanemasu et al., 1974;
Nageswara Rao and Rao, 1982; Franke and Menz,
2007). Satellite-based systems based on hyperspectral
imaging have been used to identify different diseases
such as late blight (Phytophthora infestans) in tomato
(Zhangand Qin, 2004), rice diseases (Qin et al.,
2003), and orange rust in sugarcane (Apan et al.,
2004). Sclerotinia rot is one of the major diseases
affecting the crop. Typical symptoms of the disease
includes dryness, discolouration, and shrinkage of
canopies. Outbreak of the disease is largely
accompanied by a period of persistent minimal
temperature which occurs mainly during the month
of January and February in India (Chattopadhyay,
2008). Periods of alternating cloudy, and clear sky
with intermittent drizzle are the main duration for
the spread of this disease (Venette et al., 1998). A
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three stage detection system using combination of
satellite-based remote sensing observations, and
minimum air temperature was developed for
detecting Sclerotinia rot (Sclerotinia sclerotiorum)
in Indian mustard (Baranowski et al., 2015). The
researchers developed a new technique for tracking
Sclerotinia rot at multiple stages in mustard growing
fields. The surface weather data along with  collective
satellite based imaging data,  over the period of five
years,based on analysis of surface reflectance’s in
red (R), shortwave infrared (SWIR), and near
infrared (NIR) regions as well as  land surface
temperature (LST) from Moderate Resolution
Imaging Spectro radiometer (MODIS) AQUA were
utilized for characterization of disease outbreak
(Baranowski et al., 2015).

3.  Hyperspectral imaging for identification
of biotic and abiotic stress
In natural, uncontrolled conditions, crops, and other
plants are exposed to a combination of various biotic,
and abiotic stresses that affect host metabolism, and
lead to large yield losses (Bravo et al., 2003;
Glazebrook et al., 2005; Mitchell, 1998). Biotic
stresses are caused by living organisms, such as
fungi, bacteria, viruses, and insects, which infect
plants. During plant stress, absorption of incident
light changes in both the visible, and NIR ranges,
which is due to the decrease in leaf chlorophyll
concentration, and changes in other pigments (Carter
et al., 2001; Gitelson et al., 2001; Larsolle et al.,
2007; Steddom  et al., 2003; 2005). The change of
absorption consequently influences the reflectance
of stressed plants, which can be visualised by
hyperspectral imaging systems as locally changed
spectral characteristics of leaf surfaces (Delalieux et
al., 2009; Penuelas et al., 1995; Wang et al., 2008;
Wolf and Verreet, 2002). As the plant grows, a
number of pests and pathogens pose a threat to
brassica, and such pests are unmanageable without
applications of insecticides, pesticides, and chemical
treatments (Alford et al., 2003). However,
indiscriminate use of these pesticides, and chemicals,
have led to resistance among insect populations to
the prevailing pesticides. Pesticide resistance due to
superfluous treatments is an emerging issue for pest
management programs (Valantin-Morison et al.,
2007). To control the unnecessary chemical

application, a prototype method for detection of
infestation seriousness in crops is need of the hour.
Though visual pest identification is easy, and
convenient, however, there are some chances for
biasness, and lack of accuracy (Richardson et al.,
2001; Steddom et al., 2005). Various alternative
techniques,  which have been applied for monitoring
damage detection of crops include, methods
established on digital image analysis (Diaz-Lago et
al., 2003), spectral technology (Guanand Nutter,
2002; Riedell and Blackmer, 1999), hyperspectral
imaging techniques (Zhao et al., 2011; Reisig and
Godfrey, 2010; Liu et al., 2010), and multi-spectral
imaging technology (Kim et al., 2000). The
technology of digital image analysis focusing on color
features, and morphology of targets can be employed
for qualitative as well as quantitative information on
pest identification by recognition of the edge of pests
(Habib et al., 2000; Habib, 2000). Apart from digital
image analysis, technologies based on spectral,
multispectral, and hyperspectral imaging also have
potential for quantifying damages by pests.
Reflectance spectral features characterizing aphid
infestation of wheat leaves have been studied (Mirik
et al., 2007, 2006a). Further, the reflectance spectral
data has been utilized to estimate the injury severity
during heat field infestation by sunny pests (Genc et
al., 2008). Other potential studies include utilization
of spectral data sets for detection of minute damages
in tomato leaves due to pests (Xu et al., 2007),
damage caused by thrips in sugarcane (Abdel-
Rahman et al., 2010), aphid and spider on cotton
vegetation (Reisig and Godfrey, 2007). The
technology has also been used for detection of green
bug (Yang et al., 2005; Yang, 2005), and aphid-
infested wheat (Mirik et al., 2005, 2006b). Further,
Elliott et al. (2007, 2009) demonstrated infestation
of aphid in wheat fields by analyzing airborne remote
sensing data, is an another application of spectral,
and hyperspectral techniques for large scale analysis.
Kumar et al. (2013) recently found that remote
sensing using hyperspectral data can be a useful
tool for monitoring the effect of aphid infestation in
mustard crops. Aphid infested crop had low leaf area
index (LAI), chlorophyll concentration, seed yield,
and per cent oil content as compared to healthy crop.
The reflectance for healthy crop was found to be
more in visible as well as NIR region as compared
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to aphid infested canopy. The most significant
spectral bands for the aphid infestation in mustard
are in visible (550–560 nm), and near infrared regions
(700–1250 nm and 1950–2450 nm). The different
level of aphid infestation can be identified in 1950–
2450 nm spectral regions. Spectral indices viz.,
NDVI (Normalised difference vegetation index), RVI
(Ratio vegetation index), AI (Aphid Index), and SIPI
(Structural independent pigment index) had significant
correlation with aphid infestation (Kumar et al., 2013).

Cabbage caterpillar is an important pest affecting
oilseed rape, however, no uniform criteria exist for
judging the extent of damage caused due to cabbage
caterpillars. Several researchers have shown that
hyperspectral imaging combined with digital image
analysis gives better performance for pest infestation
detection (Mirik et al., 2006c). Further, researchers
have also found that neural network modeling
method for HIS data analysis is ideal, and results in
higher accuracies for agriculture pattern recognition
(Velioglu et al., 2011; Arribas et al. 2011; Tyystjarvi
et al., 2011; Jeon et al., 2011). Neural network
modeling method has also been utilized for assessing
growth of insect (Patten et al., 2011). The
researchers have applied the combination of
hyperspectral imaging, digital image analysis, and
neural networks for detection of Cabbage caterpillar
pest infestation detection on oilseed rape. This is
useful study for evaluation of severity of damage
induced by cabbage caterpillars in oilseed rape.

Another potential application of hyperspectral imaging
technologies in mustard is early detection of biotic
stresses caused by major plant fungal pathogen
Alternaria (Baranowski et al., 2015). The genus
Alternaria is ubiquitous, saprophytic, and included
plant-pathogenic species (A. alternata, A. brassicae,
A. brassicicola,  A. dauci), which may affect crops
in the field or cause harvest and postharvest decay
of plant products. Alternaria infecion on leaves of
oilseed rape causes obstruction, and disfunction of
stomata, which affects the physiological processes
in plants. Baranowski et al. (2015) used thermal (8-

13 µm), and hyperspectral imaging in visible, and
near infrared (VNIR), and short wavelength infrared
(SWIR) ranges were used to develop a method
ofearly detection of biotic stresses caused by fungal

species belonging to the genus Alternaria. These
results revealed the good applicability of
thermography, and hyperspectral imaging in the
VNIR and SWIR regions for studying the
development of Alternaria infection on leaves of
oilseed rape within a 3-week period after inoculation.

4. Hyperspectral imaging for weed detection
Aerial remote sensing platforms were first used for
weed detection in the early 1980s. Menges et al.
(1985) utilized conventional color (CC), and color
infrared (CIR) photography as a means to distinguish
weeds from agricultural crops in experimental plots.
They found that the 850 nm, NIR reflectance
between weed, and weed/crop canopies was more
variable than the visible reflectance at 550 nm,
supporting the use of CIR over CC photography.
Initial work in remote sensing for weed detection
within crop canopies was accomplished using CIR
video systems similar to those used over the southern
range lands. Brown et al. (1994) used filters to
separate still-video images into red, green, blue, and
NIR narrow-band components for detection of weeds
in no-till corn. The classified image was visually
comparable to a full-color photograph of the same
area. Supporting the need for newer technology, they
cite difficulty in converting between video, and digital
formats. With advances in digital technology in  1990s,
Lamb and Weedon (1998) used a four-camera
airborne digital imaging system to record blue, green,
red, and NIR wave bands over a fallow field of weeds
(Pancium effusum R. Br.) in oilseed brassica stubble.
Image analysis included an unsupervised classification
of a NDVI, and supervised classifications of multi-
band images. Ground referencing was accomplished
by visually mapping weedy areas with a GPS unit on
an all-terrain vehicle (ATV). Overall classification
accuracy assessments for this pre-emergence weed
detection application ranged from 85 to 87%.
Therefore, the hyperspectral image technology can
also be used as potential tool for weed emergence
detection.

5. Detecting macronutrients content and
distribution in oilseed rape leaves using
hyperspectral imaging
Apart from their  ideal performance to detect many
kinds of crop diseases, spectral, and hyperspectral
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imaging technologies have also been used to analyze
chemical composition for crops and foods (Liu et
al., 2008; 2011a; 2011b; Liu and He, 2008). Nitrogen
(N), phosphorus (P), and potassium (K) are the most
important macronutrients for maintaining plant
growth status, and enhancing crop yield. Nitrogen is
a key element in all organisms, and in different
physiological processes of plants, where it is required
consistently, and in large amounts (Bondada &
Oosterhuis, 2001; Evans, 2001; Feng et al., 2006;
Fismes et al., 2000; Hezewijk et al., 2008).
Phosphorus is a crucial ingredient of some macro-
molecules such as nucleic acids, phospholipids, and
sugar phosphates (Raghothama and Karthikeyan,
2005). Organic P compounds are involved in energy
transfer reactions, and in respiration. Potassium plays
an essential role in enzymatic reactions, the
maintenance of osmotic potential, and water uptake
during plant development (Dong, et al., 2010;
Pettigrew, 2008). In recent decades, a rapid increase
in production of oilseed rape has required the
improvement of fertiliser management to optimise
the crop yield, and product quality. The traditional
uniform application of fertiliser’s in a field can’t match
the requirements of individual plants, and result in
over-or under application, which tends to bring about
soil quality degradation, ground water pollution, and
fluctuation or even reductionin yield (Dong et al.,
2010; Farruggia et al., 2004; Jorgensen et al., 2007;
Rathke et al., 2006). It is important to understand
leaf nutrition of oilseed rape in order to optimise the
fertilisation process. However, conventional chemical
analysis for the determination of leaf nutrient content
is time consuming, and destructive. Therefore, a
precise, and rapid method for detecting specific
nutrient concentration is of significant importance
for precision diagnosis, real-time fertilisation, and
productivity prediction which can lead to economic,
and environmental benefits. The measurement of
leaf, and canopy spectral reflectance is a promising
technique to estimate the concentrations or
biochemical composition in foliage. Good results have
been obtained for the quantification of oleuropein in
olive leaves (Aouidi et al., 2012), measurement of
N content in wheat crops (Hansena and Schjoerring,
2003; Mistele and Schmidhalter, 2008; Tarpley et
al., 2000), and evaluation of plant water status
(Cheng et al., 2011; Feret et al., 2011). There has

also been a number of surveys to determine quality
factors in oilseed rape based on spectral techniques,
such a soil, protein, and total glucosinolate content
of rapeseed (Petisco et al., 2010), chlorophyll of
rape leaves (Fang et al., 2007), acetolactate synthase
activity, and protein content, and total amino acids
in herbicide-stressed oilseed rape leaves (Liu et al.,
2008; Liu et al., 2011a; Liu et al., 2011b). Therefore,
site-specific fertilisation management in precision
farming systems could benefit from spectroscopy, a
fast, and non-destructive method, for obtaining the
variability of leaf nutrient status during crop growth.
Hyperspectral imaging is an emerging technology that
integrates both spectroscopy, and imaging techniques
in one system to provide spectral, and spatial
information simultaneously (Barbina et al., 2012).
Since each hyperspectral image contains information
about the spatial distribution of chemical constituents
in the object as well as spectral information for each
pixel in hundreds of contiguous discrete spectral
bands, chemical composition analyses can be more
reliable than using only spectral reflectance or
traditional machine vision. Examples include detection
of chlorophyll distribution in cucumber leaves (Zou
et al., 2011), and estimation of leaf nitrogen
accumulation in wheat (Yao et al., 2010). Recently,
researchers has reported on quantitative assessment
of the three essential macronutrients (N, P and K) in
oilseed brassica leaves, and determining their
concentration distribution (Zhang et al., 2013). The
hyperspectral imaging was used to provide N, P, and
K concentration information to show the nutrient
distribution in oilseed rape leaves. Partial least square
regression (PLSR), and least-squares support vector
machines (LS-SVM) calibration models were
developed to quantitatively relate spectral features
to N, P, K, and identify the most significant
wavelengths linked to each chemical constituent in
fresh leaves, The results demonstrated that it is
possible to apply hyperspectral imaging technique in
VIS/NIR region for nutrient analysis in oilseed rape.
Correlations between the spectral features, and
macronutrient content of leaf samples were
established by using PLSR, and LS-SVM analysis,
and reasonable accuracy was obtained for nutrient
content detection. It indicates the potential of
hyperspectral imaging to be used as a rough
screening tool for estimation of N, P, and K content
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in situ in living plant samples non-destructively. The
distribution maps can provide data on spatial
localisation of nutrient accumulation, and would be
helpful to understand the changing of nutrient content
in leaves under different fertilizer treatments.

Further, the hyperspectral technologies can be used
to embody several other features of the oilseed rape
for further analysis. However, few research
endeavours have been reported on prediction of yield
in oilseed rape from spectral features of leaves
obtained by hyperspectral imaging. The technique
has also been used very recently for determination
of concentration of pigments of Oilseed rape (Heet
et al., 2015). A hyperspectral imaging system
covering the spectral range 380-1030 nm was used
to estimate leaf pigment concentration. Spectral
information of rape leaves were extracted from the
hyperspectral images. Partial least squares (PLS),
least squares-support vector machine (LS-SVM), and
extreme learning machine (ELM) were applied to
build calibration models using spectra of 500-900
nm to determine the concentrations of chlorophyll a
(Chl a), chlorophyll b (Chl b), total chlorophyll (tChl),
and carotenoids (Car). The overall results indicated
that hyperspectral imaging with ELM method was
an efficient technique for leaf pigment content
determination, and the selected sensitive wavelengths
would be helpful to develop portable instrument or
on-field monitoring sensors in the precise agricultural
management.

6. Hyperspectral imaging for yield estimation
Early researchers have found that leaves contribute
to seed development during the ripening phase,
including the number of pods per plant, and seed
weight per pod (Brar and Thies, 1977; Clarke, 1978;
Diepenbrock, 2000; Freyman et al., 1973). However,
to predict the yield of oilseed rape on individual plants
using the potential crop growth information in rape
leaves in earlier stage is a challenging job for growers
and researchers. Economic and environmental
benefit will be both obtained if the individual oilseed
yield can be estimated accurately. Farmers can contact
their bulk handlers and marketers can determine the
price of their product ahead of their harvest season.
Yield estimation can provide valuable information
for planning harvest schedules, and generating

prescription maps for management practices. It is
difficult to record the yield of individual plant because
manual measurement of  yield is laborious, and time-
consuming. Therefore, an approach for early, and
rapidly estimating oilseed rape yield is highly
desirable and beneficial. Hyperspectral imaging is
an emerging technology that simultaneously
acquires spatial information, as regular imaging
systems, and spectral information for each pixel in
the image. Comparison of conventional RGB
imaging, NIR spectroscopy, and multispectral
imaging, hyperspectral imaging has many advantages
such as containing spatial, spectral, and multi-
constituent information, and sensitivity to minor
components (Gowen et al., 2007).

Furthermore, imaging spectroscopy has been
successfully applied in estimating the crop yield.
Examples included the prediction of biomass, and
yield of winter wheat under different nitrogen
supplies using spectral indices (Serrano Examples
et al., 2000). Ye et al. (2006) obtained the
reasonable estimation of citrus yield using the
hyperspectral data with a high R2 in regression
analysis. Meanwhile, Weber et al. (2012) predicted
the grain yield using reflectance spectra of canopy,
and leaves in maize plants grown under different
water regimes, and got the most relevant wave
lengths for predicting the yield. Recently, Zhang and
He (2013) developed a technique to early and rapidly
estimate seed yield using hyperspectral images of
oilseed rape leaves in the visible, and near infrared
(VIS–NIR) region (380–1030 nm). Among the
hyperspectral images in four growing stages, the
hyperspectral images obtained in flowering stage
demonstrated the highest correlation with seed
yield. This suggests that leaf spectral features at
the flowering stage provide more relevant
information on the yield variability among individual
plants, hence, the hyperspectral imaging can be
applied for yield estimation.
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